Рефераты на украинском
Чотирикутники - Математика -



ОЗНАЧЕННЯ ЧОТИРИКУТНИКА

Чотирикутником називається фігура, яка складається з чотирьох точок і чотирьох відрізків, що послідовно їх сполучають. При цьому жодні три з даних точок не повинні лежати на одній прямій, а відрізки, які їх сполучають, не повинні перетинатися. Дані точки називаються вершинами чотирикутника, а відрізки, що їх сполучають, - сторонами чотирикутника.

Вершини чотирикутника називаються сусідніми, якщо вони є кінцями однієї з його сторін. Вершини, які не є сусідніми , називаються протилежними. Відрізки, що сполучають протилежні вершини чотирикутника, називаються діагоналями. У чотирикутнику на малюнку 91 діагоналями є АС, ВD.

С

В ž

А D

Сторони чотирикутника. Що виходять з однієї вершини, називаються сусідніми сторонами. Сторони, які не мають спільного кінця, називаються протилежними сторонами. У чотирикутну на малюнку 91 протилежними є сторони АВ і СD, ВС і АD.

Чотирикутник позначають, записуючи його вершини. Наприклад, чотирикутник на малюнку 01 позначено так: АВСD. У записі чотирикутника вершини, що стоять поряд, повинні бути сусідніми. Чотирикутник АВСD на малюнку 91 можна позначити ВСDА або СDА, але не можна позначити АВСD (В і D – несусідні вершини).

ПАРАЛЕЛОГРАМ

Паралелограм – це чотирикутник, у якого протилежні сторони паралельні, тобто лежать на паралельних прямих ( мал.93а).

В С

А D

Теорема 1. Якщо діагоналі чотирикутника перетинаються і в точці перетину діляться пополам, то цей чотирикутник – паралелограм.

Теорема 2. Діагоналі паралелограма перетинаються і точці перетину діляться пополам.

Теорема 3. У паралелограма протилежні сторони рівні, протилежні кути рівні.

Доведення. Нехай АВСD – даний паралелограм Проведемо діагоналі паралелограма. Нехай ) – точка їх перетику. Рівність протилежних сторін АВ і СD випливає з рівності трикутників АОВ і СОD. У них кути при вершині О рівні як вертикальні, а ОА +ОС і ОВ + OD за теоремою 2. Так само з рівності трикутників АОD і СОВ випливає рівність другої пари протилежних сторін АD і ВС.

Рівність протилежних АВС і СDА випливає з рівності трикутників АВС і СDА (за трьома сторонами). У них АВ+СВ і ВС + DА за доведеним, а сторона АС спільна.

Так само рівність протилежних кутів ВСD іDАВ випливає з рівності трикутників ВСD і DАВ. Теорему доведено.

ПРЯМОКУТНИК. РОМБ. КВАДРАТ

Теорема 1. Діагоналі прямокутника рівні.

Твердження теореми випливає з рівності прямокутних трикутників ВАD і СDА. У них кути ВАD і СDА прямі , катет АD спільник, а катети АВ і СD рівні як протилежні сторони паралелограма. З рівності трикутників випливає, що їх гіпотенузи теж рівні. А гіпотенузи є діагоналями прямокутника. Теорему доведено.

Теорема 2. Діагоналі ромба перетинаються під прямим кутом. Діагоналі ромба є бісектрисами його кутів.

Доведення. Нехай АВСD – даний ромб., а О – точка перетину його діагоналей. За властивість. Паралелограма АО=ОС . Отже у рівнобедреному трикутнику АВС відрізок ВО є медіаною. За властивістю рівнобедреного трикутника медіана, проведена до його основи, є бісектрисою і висотою. А це означає, що діагональ ВD є бісектрисою кута В і перпендикулярна до діагоналі АС. Теорему доведено.

Квадрат – це прямокутник, якого всі сторони рівні.

Квадрат є також ромбом, тому він має властивості прямокутника і ромба.

ТРАПЕЦІЯ

Трапецією називається чотирикутник, у якого тільки дві протилежні сторони паралельні. Ці паралельні сторони називаються основами трапеції. Дві інші сторони називаються бічними сторонами Трапеція, у якої бічні сторони рівні, називається рівнобічною. Відрізок, який сполучає середини бічних сторін, називається середньою лінією трапеції.

Теорема 1. Середня лінія трапеції паралельна основам і дорівнює їх півсумі.

Теорема 2. Паралельні прямі що перетинають сторони кута, відтинають від сторін кута пропорційні відрізки.



Назад

 Поиск рефератов
 
 Реклама
 Реклама
 Афоризм
Прогуляю вашу собаку, дачу, машину, квартиру…
 Гороскоп
Гороскопы
 Знакомства
я  
ищу  
   лет
 Реклама
 Счётчики
bigmir)net TOP 100