Промышленность, производство: Свойства наночастиц, Курсовая работа

Министерство науки и образования Российской Федерации

Государственное образовательное учреждение

высшего профессионального образования

Московский государственный открытый университет (МГОУ)

Кафедра химической технологии переработки полимерных материалов

и органических веществ

Курсовая работа по дисциплине

«Нанотехнологии»

Свойства наночастиц

Выполнила студентка Ефимова Л. А.

Факультет химико-технологический

Курс 4

Специальность 240502 «Технология переработки пластических масс

и эластомеров»

Шифр 405269

Проверил д.т.н., профессор

заслуженный работник высшей школы РФ Шевердяев О.Н.

Москва 2009 г.


Содержание

Введение

1. История

2. Определение

3. Классификация нанообъектов

4. Свойства наночастиц

4.1 Серебро

4.2 Оксид цинка

4.3 Диоксид кремния

5. Некоторые достижения на основе наночастиц

5.1 Наноматериалы

5.2 Нанокристаллы

5.3 Наномедицина и химическая промышленность

5.4 Компьютеры и микроэлектроника

5.5 Робототехника

Литература        


Введение

Сфера нанотехнологий считается во всем мире ключевой темой для технологий XXI века. Возможности их разностороннего применения в таких областях экономики, как производство полупроводников, медицина, сенсорная техника, экология, автомобилестроение, строительные материалы, биотехнологии, химия, авиация и космонавтика, машиностроение и текстильная промышленность, несут в себе огромный потенциал роста. Применение продукции нанотехнологий позволит сэкономить на сырье и потреблении энергии, сократить выбросы в атмосферу и будет способствовать тем самым устойчивому развитию экономики.

С одной стороны, нанотехнологии уже нашли сферы применения, с другой – они остаются для большинства населения областью научной фантастики. В будущем значение нанотехнологий будет только расти. В специализированной области это будет пробуждать интерес и стимулировать проведение исследовательских и опытно-конструкторских работ, а также работ по нахождению новых областей применения нанотехнологий.

В данной курсовой работе рассматриваются некоторые свойства наночастиц различных химических элементов и их соединений. Представлены некоторые достижения на основе наночастиц.


1. История

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Там внизу много места» (англ. «Theres Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы, при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма. Последний этап — полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой собирать макровещи. Это позволит сделать вещи на порядок дешевле — таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Принципиальный недостаток такого робота — невозможность создания механизма из одного атома.

В ходе теоретического исследования данной возможности, появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь» или «серая жижа»).

Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге "Opticks" Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать "тайны корпускул"[1].

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: «Машины создания: грядёт эра нанотехнологии» («Engines of Creation: The Coming Era of Nanotechnology») и «Nanosystems: Molecular Machinery, Manufacturing, and Computation». Центральное место в его исследованиях играли математические расчёты, с помощью которых можно было проанализировать работу устройства размерами в несколько нанометров.


2. Определение

Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы, размерами от 1 до 100 нанометров обычно называют наночастицами.


3. Классификация нанообъектов

Нанообъекты делятся на 3 основных класса:

- трёхмерные частицы, получаемые взрывом проводников, плазменным синтезом, восстановлением тонких плёнок и т.д;

- двумерные объекты — плёнки, получаемые методами молекулярного наслаивания, CVD, ALD, методом ионного наслаивания и т.д;

- одномерные объекты — вискеры, эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры и т. д.

Также существуют нанокомпозиты — материалы, полученные введением наночастиц в какие либо матрицы. На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, применяется он в электронике; метод CVD и ALD в основном применяется для создания микронных плёнок. Прочие методы в основном используются в научных целях. В особенности следует отметить методы ионного и молекулярного наслаивания, поскольку с их помощью возможно создание реальных монослоёв.


4. Свойства наночастиц

Наиболее сильные изменения свойств наноматериалов и наночастиц наступают в диапазоне размеров кристаллитов порядка 10..100нм. Основные физические причины этого можно проиллюстрировать на рис 1.

Для наночастиц доля атомов, находящихся в тонком поверхностном слое (~ 1 нм), по сравнению с микрочастицами заметно возрастает.

Так, например, оказывается, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дешевы и могут быть механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров — белками, нуклеиновыми кислотами и др. Тщательно очищенные, наночастицы могут самовыстраиваться в определенные структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства.


Рис. 1. Основные физические причины специфики наночастиц (наноматериалов).

4.1 Серебро

Свойства у наночастиц серебра на самом деле уникальные. Во-первых, они обладают феноменальной бактерицидной и антивирусной активностью. Об антимикробных свойствах, присущих ионам серебра, человечеству известно уже очень давно. Наверняка, многие слышали о целительных способностях церковной «святой воды», получаемой путем прогонки обычной воды через серебряный фильтр. Такая вода не содержит многих болезнетворных бактерий, которые могут присутствовать в обычной воде. Поэтому она может храниться годами, не портясь и не «зацветая». В медицинской практике иногда назначают «серебряную» воду для лечения ран, язв, болезней мочевого пузыря. Кроме того, такая вода содержит некоторую концентрацию ионов серебра, способных нейтрализовать вредные бактерии и микроорганизмы, чем и объясняется ее благотворное влияние на здоровье человека. Установлено, что наночастицы серебра в тысячи раз эффективнее борются с бактериями и вирусами, чем серебряные ионы. Как показал эксперимент, ничтожные концентрации наночастиц серебра уничтожали все известные микроорганизмы (в том числе и вирус СПИДа), не расходуясь при этом (рис. 2).

Рис. 19. Вирусы атакуют клетку. (Рыбалкина, 2007)

Рис. 2. Вирусы атакуют клетку.

Кроме того, в отличие от антибиотиков, убивающих не только вредоносные вирусы, но и пораженные ими клетки, действие наночастиц очень избирательно: они действуют только на вирусы, клетка при этом не повреждается! В настоящее время проводятся исследования возможностей использования наночастиц серебра в фармацевтических препаратах. Но уже сейчас они находят достаточно широкое применение.

Так, например, в настоящее время выпускаются зубные пасты с наночастицами серебра, которые не только очищают зубы, но и эффективно защищают от различных инфекций. Также небольшие концентрации наночастиц серебра добавляют в некоторые кремы из серии «элитной» косметики для предотвращения их порчи во время использования. Добавки на основе серебряных наночастиц применяются в качестве антиаллергенного консерванта в кремах, шампунях, косметических средствах для макияжа и т.д. При их использовании наблюдается также противовоспалительный и заживляющий эффект.

Текстильные ткани, содержащие наночастицы серебра, обладают самодезинфицирующими свойствами. Такие ткани незаменимы для медицинских халатов, постельного белья и т.д.

Наночастицы способны долго сохранять бактерицидные свойства после нанесения на многие твердые поверхности (стекло, дерево, бумага, керамика, оксиды металлов и др.). Это позволяет создать высокоэффективные дезинфицирующие аэрозоли длительного срока действия для бытового применения. В отличие от хлорки, карболовой кислоты и других химических средств обеззараживания, аэрозоли на основе наночастиц не токсичны и не вредят здоровью людей и животных.

Если добавить в лакокрасочные материалы, покрывающие стены зданий, наночастицы серебра, то на покрашенных такими красками стенах и потолках не может жить большинство патогенных микроорганизмов. Добавка в угольные фильтры для воды наночастиц серебра существенно увеличивает срок службы таких фильтров, а качество очистки воды при этом возрастает на порядок.

Помимо обеззараживающих свойств, наночастицы серебра обладают также высокой электропроводностью, что позволяет создавать различные проводящие клеи. Проводящий клей может быть использован, например, в микроэлектронике для соединения мельчайших электронных деталей.

Таким образом, крошечные, незаметные, экологически чистые серебряные наночастицы могут применяться везде, где необходимо обеспечить чистоту и гигиену: от косметических средств до обеззараживания хирургических инструментов или помещений.


4.2 Оксид цинка

Наночастицы оксида цинка также обладают рядом уникальных свойств (в том числе и бактерицидных), среди которых особый интерес вызывает способность поглощать широкий спектр электромагнитного излучения, включая ультрафиолетовое, инфракрасное, микроволновое и радиочастотное.

Такие частицы могут служить, например, для защиты против УФ-лучей, придавая новые функции стеклам, пластмассам, краскам, синтетическим волокнам и т.д. Эти частицы также можно использовать для приготовления солнцезащитных кремов, мазей и других препаратов, так как они безопасны для человека и не раздражают кожу (рис. 3).

Способность наночастиц оксида цинка к рассеянию электромагнитных волн может использоваться в тканях одежды для придания ей свойств невидимости в инфракрасном диапазоне за счет поглощения излучаемого человеческим телом тепла. Это позволяет изготавливать камуфляжи, невидимые в широком диапазоне частот – от радио до ультрафиолета. Такая одежда просто незаменима в военных или антитеррористических операциях, поскольку позволяет вплотную подойти к противнику без риска быть замеченным приборами ночного видения.

Рис. 20. Наночастицы оксида цинка высокой чистоты, предназначенные для использования в электронике, катализаторах, медицинских продуктах, продуктах личной гигиены (http://www.polymery.ru)

Рис. 3. Наночастицы оксида цинка высокой чистоты, предназначенные для использования в электронике, катализаторах, медицинских продуктах, продуктах личной гигиены.


4.3 Диоксид кремния

Наночастицы диоксида кремния (SiO2) обладают удивительным свойством: если их нанести на какой-либо материал, то они присоединяются к его молекулам и позволяют поверхности отторгать грязь и воду. Самоочищающиеся нанопокрытия на основе этих частиц защищают стекла, плитку, дерево, камень и т.д. Частицы грязи не могут прилипнуть или проникнуть в защищаемую поверхность, а вода легко стекает с нее, унося любые загрязнения (рис. 4).

Рис. 21. Принцип действия самоочищающихся нанопокрытий. (Рыбалкина, 2007)

Рис. 4. Принцип действия самоочищающихся нанопокрытий.

Ткань после нанесения покрытия свободно пропускает воздух, но не пропускает влагу. Можно забыть про трудновыводимые пятна от кофе, жира, грязи и пр. Покрытие устойчиво к трению, гибко, не портится от солнечного света, температуры и стирки.


5. Некоторые достижения на основе наночастиц

5.1 Наноматериалы

Материалы, разработанные на основе наночастиц с уникальными характеристиками, вытекающими из микроскопических размеров их составляющих.

Углеродные нанотрубки — протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров, состоящие из одной или нескольких свёрнутых в трубку гексагональных графитовых плоскостей (графенов) и обычно заканчивающиеся полусферической головкой.

Фуллерены — молекулярные соединения, принадлежащие классу аллотропных форм углерода (другие — алмаз, карбин и графит) и представляющие собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода.

Графен — монослой атомов углерода, полученный в октябре 2004 года в Манчестерском университете (The University Of Manchester). Графен можно использовать, как детектор молекул (NO2), позволяющий детектировать приход и уход единичных молекул. Графен обладает высокой подвижностью при комнатной температуре, благодаря чему как только решат проблему формирования запрещённой зоны в этом полуметалле, обсуждают графен как перспективный материал, который заменит кремний в интегральных микросхемах.

5.2 Нанокристаллы

Наноаккумуляторы — в начале 2005 года компания Altair Nanotechnologies (США) объявила о создании инновационного нанотехнологического материала для электродов литий-ионных аккумуляторов. Аккумуляторы с Li4Ti5O12 электродами имеют время зарядки 10-15 минут. В феврале 2006 года компания начала производство аккумуляторов на своём заводе в Индиане. В марте 2006 Altairnano и компания Boshart Engineering заключили соглашение о совместном создании электромобиля. В мае 2006 успешно завершились испытания автомобильных наноаккумуляторов. В июле 2006 Altair Nanotechnologies получила первый заказ на поставку литий-ионных аккумуляторов для электромобилей.

5.3 Наномедицина и химическая промышленность

Направление в современной медицине основанное на использовании уникальных свойств наноматериалов и нанообъектов для отслеживания, конструирования и изменения биологических систем человека на наномолекулярном уровне.

ДНК-нанотехнологии — используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур.

Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис-пептиды).

5.4 Компьютеры и микроэлектроника

Центральные процессоры — 15 октября 2007 года компания Intel заявила о разработке нового прототипа процессора, содержащего наименьший структурный элемент размерами примерно 45 нм. В дальнейшем компания намерена достичь размеров структурных элементов до 5 нм. Основной конкурент Intel, компания AMD, также давно использует для производства своих процессоров нанотехнологические процессы, разработанные совместно с компанией IBM. Характерным отличием от разработок Intel является применение дополнительного изолирующего слоя SOI, препятствующего утечке тока за счет дополнительной изоляции структур, формирующих транзистор. Уже существуют рабочие образцы процессоров с транзисторами размером 45 нм и опытные образцы на 32 нм.

Жесткие диски — в 2007 году Питер Грюнберг и Альберт Ферт получили Нобелевскую премию по физике за открытие GMR-эффекта, позволяющего производить запись данных на жестких дисках с атомарной плотностью информации.

Атомно-силовой микроскоп — сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. Обычно под взаимодействием понимается притяжение или отталкивание кантилевера от поверхности из-за сил Ван-дер Ваальса. Но при использованиии специальных кантилеверов можно изучать электрические и магнитные свойства поверхности. В отличие от сканирующего туннельного микроскопа (СТМ), может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение атомно-силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.

Антенна-осциллятор — 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна-осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с ее помощью огромные объемы информации.

Плазмоны — коллективные колебания свободных электронов в металле. Характерной особенностью возбуждения плазмонов можно считать так называемый плазмонный резонанс, впервые предсказанный Ми в начале XX века. Длина волны плазмонного резонанса, например, для сферической частицы серебра диаметром 50 нм составляет примерно 400 нм, что указывает на возможность регистрации наночастиц далеко за границами дифракционного предела (длина волны излучения много больше размеров частицы). В начале 2000-го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии — наноплазмонике. Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

5.5 Робототехника

Молекулярные роторы — синтетические наноразмерные двигатели, способные генерировать крутящий момент при приложении к ним достаточного количества энергии.

Нанороботы — роботы, созданные из наноматериалов и размером сопоставимые с молекулой, обладающие функциями движения, обработки и передачи информации, исполнения программ. Нанороботы, способные к созданию своих копий, то есть самовоспроизводству, называются репликаторами. Возможность создания нанороботов рассмотрел в своей книге «Машины создания» американский учёный Эрик Дрекслер. Вопросы разработки нанороботов и их компонентов рассматриваются на профильных международных конференциях[3][4].

Молекулярные пропеллеры — наноразмерные молекулы в форме винта, способные совершать вращательные движения благодаря своей специальной форме, аналогичной форме макроскопического винта.

С 2006 года в рамках проекта RoboCup (чемпионат по футболу среди роботов) появилась номинация «Nanogram Competition», в которой игровое поле представляет из себя квадрат со стороной 2.5 мм. Максимальный размер игрока ограничен 300 мкм.


Литература

1.  www.olymp.ifmo.ru.

2.  www.wikipedia.ru.

3.  www.nanonewnet.ru.

4.  www.magneticliquid.narod.ru.

5.  www.nanovsem.ru.

6.  Магнитные наночастицы: методы получения, строения, свойства. С.П. Губин, Ю.А. Кокшаров, Г.Б. Хомутов, Г.Ю. Юрков.


Еще из раздела Промышленность, производство:


 Это интересно
 Реклама
 Поиск рефератов
 
 Афоризм
В воскресный поход приглашаются все энтузиасты этого дела. Этого дела брать по две бутылки на человека.
 Гороскоп
Гороскопы
 Счётчики
bigmir)net TOP 100