Реферати українською
Розв'язування систем лінійних рівнянь методом Гаусса - Математика -



Одним з найпоширеніших методів розв'язування систем лінійних рівнянь є метод послідовного виключення невідомих, або метод Гаус­са. Цей метод запропонований К. Гауссом і ґрунтується на елементар­них перетвореннях системи рівнянь (п. 2.1).

Нехай маємо систему (9), яка містить т рівнянь і п невідомих. Оче­видно, серед коефіцієнтів аі1 хоча б один відмінний від нуля. Якщо ж а11 = 0, то першим в системі (9) запишемо те рівняння, в якому кое­фіцієнт при х1 відмінний від нуля. Позначимо цей коефіцієнт через а11.

Перетворимо систему (9), виключаючи x1 в усіх рівняннях, крім першого. Для цього помножимо перше рівняння на — і додамо до другого, потім помножимо перше рівняння на — і додамо до тре­тього і т. д. При цьому може статись так, що друге невідоме х2 також не входить в усі рівняння з номером і > 1. Нехай xk — невідоме з найменшим номером, яке входить в будь-яке рівняння, не рахуючи першого. Дістанемо систему

Застосовуючи до всіх рівнянь, крім першого, таку саму процедуру і виконавши ряд елементарних перетворень, дістанемо систему

Якщо продовжити цей процес, то матимемо систему

Таку систему рівнянь називають східчастою або трапецієподібною. Дослідимо цю систему.

1. Якщо система містить рівняння виду 0 = bt і bt ≠ 0, то вона оче­видно несумісна.

2. Нехай система (22) не містить рівнянь виду 0 = bt (bt ≠ 0). На­звемо невідомі х1, xk, хl, ..., xs, з яких починаються перше, друге, ..., r-е рівняння, основними, а всі інші, якщо вони е, вільними. Основ­них невідомих за означенням r. Надаючи вільним невідомим довільні значення і підставляючи ці значення в рівняння системи, з r-го рів­няння знайдемо хs. Підставляючи це значення в перші r — 1 рівнянь і, піднімаючись вгору по системі, знайдемо всі основні невідомі. Оскіль­ки вільні невідомі можуть набувати будь-яких значень, система має безліч розв'язків.

3. Нехай в системі (22) г — п. Тоді вільних невідомих немає, тобто всі невідомі основні і система (22) має так званий трикутний вигляд:



З останнього рівняння системи знайдемо хп, і, піднімаючись по си­стемі вгору, знайдемо всі інші, невідомі. Отже, в цьому випадку сис­тема має єдиний розв'язок.

Зауваження 1. Викладений нами метод послідовного ви­ключення змінних називають ще алгоритмом Гаусса. Він складається з однотипових операцій і легко реалізується на сучасних ЕОМ.

Зауваження 2. При розв'язуванні системи лінійних рів­нянь методом Гаусса зручніше приводити до трикутного чи трапеціє­подібного вигляду не саму систему рівнянь, а розширену матрицю цієї системи, тобто матрицю, утворену приєднанням до матриці її коефіці­єнтів стовпця вільних членів. Виконуючи над рядками розширеної мат­риці елементарні перетворення, приходимо до розв'язку системи.

Приклад

Розв’язати систему рівнянь методом Гаусса:

а) б) в)

а) Виконуємо елементарні перетворення над рядками розширеної матриці даної системи (позначатимемо це символом )

Таким чином, система а) еквівалентна системі

в останньому рівнянні вільний член дорівнює двом, а коефіцієнт при невідомих дорівнюють нулю (тобто 0 = 2­­­), тому система несумісна.

б) Маємо

Отже система б) еквівалентна системі трикутного вигляду

і має єдиний розв’язок :

в) Маємо

Отже система в) еквівалентна системі трапецієподібного вигляду

і має безліч розв’язків. З останньої системи знаходимо

Таким чином розв’язки системи в) мають такий вигляд

Зазначимо, що жодну з наведених у цьому прикладі систем не можна розв’язувати ні за формулами Крамера, ні матричним способом.


Література:

Дубовик В.П., Юрик І.І., Вища математика: навч. посібник – К.: А.С.К. 2001 – 648с., іл. – (Унів. б-ка) – бібліорг. с. 632-633



Назад

 Это интересно
 Реклама
 Поиск рефератов
 
 Афоризм
Количество дураков растет, а вот качество падает.
 Гороскоп
Гороскопы
 Счётчики
bigmir)net TOP 100